首页 - TPO 8 阅读第3篇 第7题
题目
7. All of the following questions about geological features on Mars are answered in paragraph 3 EXCEPT:
What are some regions of Mars that may have once been covered with an ocean?.
Where do mission scientists believe that the river forming the delta emptied?
Approximately how many craters on Mars do mission scientists believe may once have been lakes filled with water?
During what period of Mars’ history do some scientists think it may have had large bodies of water?
Paragraph 3 is marked with ◆
题目解析
A 选项对应原文倒数第二句,即一张关于火星北部极地地区的电脑图片说明有可能有一个古老的海洋覆盖了大部分北部的低洼处,正确。B 选项对应第二句,即河流可能是从这里流入了一个更大的水体;在这种情况下,它可能是南部高地的一个火山口湖泊,正确。C 选项对应原文第二句,但原句 in this case a lake filling a crater in the southern highlands 只说有一个 crater 被填满,而不是很多,所以选项 C 错。D 选项对应第一句,即一些科学家认为早期的火星上广泛存在着河流,湖泊甚至是海洋,正确。

答案: C
阅读原文

Running Water on Mars

Photographic evidence suggests that liquid water once existed in great quantity on the surface of Mars. Two types of flow features are seen: runoff channels and outflow channels. Runoff channels are found in the southern highlands. These flow features are extensive systems—sometimes hundreds of kilometers in total length—of interconnecting, twisting channels that seem to merge into larger, wider channels. They bear a strong resemblance to river systems on Earth, and geologists think that they are dried-up beds of long-gone rivers that once carried rainfall on Mars from the mountains down into the valleys. Runoff channels on Mars speak of a time 4 billion years ago (the age of the Martian highlands), when the atmosphere was thicker, the surface warmer, and liquid water widespread.
Outflow channels are probably relics of catastrophic flooding on Mars long ago. They appear only in equatorial regions and generally do not form extensive interconnected networks. Instead, they are probably the paths taken by huge volumes of water draining from the southern highlands into the northern plains. The onrushing water arising from these flash floods likely also formed the odd teardrop-shaped “islands” (resembling the miniature versions seen in the wet sand of our beaches at low tide) that have been found on the plains close to the ends of the outflow channels. Judging from the width and depth of the channels, the flow rates must have been truly enormous—perhaps as much as a hundred times greater than the 105 tons per second carried by the great Amazon River. Flooding shaped the outflow channels approximately 3 billion years ago, about the same times as the northern volcanic plains formed.
◆ Some scientists speculate that Mars may have enjoyed an extended early Period during which rivers, lakes, and perhaps even oceans adorned its surface. A 2003 Mars Global Surveyor image shows what mission specialists think may be a delta—a fan-shaped network of channels and sediments where a river once flowed into a larger body of water, in this case a lake filling a crater in the southern highlands. Other researchers go even further, suggesting that the data provide evidence for large open expenses of water on the early Martian surface. A computer-generated view of the Martian north polar region shows the extent of what may have been an ancient ocean covering much of the northern lowlands. The Hellas Basin, which measures some 3,000 kilometers across and has a floor that lies nearly 9 kilometers below the basin’s rim, is another candidate for an ancient Martian sea.
These ideas remain controversial. Proponents point to features such as the terraced “beaches” shown in one image, which could conceivably have been left behind as a lake or ocean evaporated and the shoreline receded. But detractors maintain that the terraces could also have been created by geological activity, perhaps related to the geologic forces that depressed the Northern Hemisphere far below the level of the south, in which case they have nothing whatever to do with Martian water. Furthermore, Mars Global Surveyor data released in 2003 seem to indicate that the Martian surface contains too few carbonate rock layers—layers containing compounds of carbon and oxygen—that should have been formed in abundance in an ancient ocean. Their absence supports the picture of a cold, dry Mars that never experienced the extended mild period required to form lakes and oceans. However, more recent data imply that at least some parts of the planet did in fact experience long periods in the past during which liquid water existed on the surface.
Aside from some small-scale gullies (channels) found since 2000, which are inconclusive, astronomers have no direct evidence for liquid water anywhere on the surface of Mars today, and the amount of water vapor in the Martian atmosphere is tiny. Yet even setting aside the unproven hints of ancient oceans, the extent of the outflow channels suggests that a huge total volume of water existed on Mars in the past. Where did all the water go? The answer may be that virtually all the water on Mars is now locked in the permafrost layer under the surface, with more contained in the planet’s polar caps.
朗播网TPO免费在线模考,精准校对,逐题解析。 模考入口
相关题目

请选择发起聊天的方式:

安装 QQ